Abstract

Knowledge Management of Mathematics Concepts was essential in educational environment. The purpose of this study is to provide an integrated method of fuzzy theory basis for individualized concept structure analysis. This method integrates Fuzzy Logic Model of Perception (FLMP) and Interpretive Structural Modeling (ISM). The combined algorithm could analyze individualized concepts structure based on the comparisons with concept structure of expert. Fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. A Fuzzy C-Means algorithm based on Mahalanobis distance (FCM-M) was proposed to improve those limitations of GG and GK algorithms, but it is not stable enough when some of its covariance matrices are not equal. A new improved Fuzzy C-Means algorithm based on a Normalized Mahalanobis distance (FCM-NM) is proposed. Use the best performance of clustering Algorithm FCM-NM in data analysis and interpretation. Each cluster of data can easily describe features of knowledge structures. Manage the knowledge structures of Mathematics Concepts to construct the model of features in the pattern recognition completely. This procedure will also useful for cognition diagnosis. To sum up, this integrated algorithm could improve the assessment methodology of cognition diagnosis and manage the knowledge structures of Mathematics Concepts easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.