Abstract

Using an age-structured process-based simulation model for diamondback moth (DBM), we model the population dynamics of this major Brassica pest using the cropping practices and climate of Guangdong, China. The model simulates two interacting sub-populations (demes), each representing a short season crop. The simulated DBM abundance, and hence pest problems, depend on planting regime, crop hygiene and biological control. A continuous supply of hosts, a low proportion of crop harvested and long residue times between harvest and replanting each exacerbate pest levels. Biological control provided by a larval parasitoid can reduce pest problems, but not eliminate them when climate is suitable for DBM and under certain planting practices. The classic Integrated Pest Management (IPM) method of insecticide application, when pest threshold is reached, proved effective and halved the number of insecticide sprays when compared with the typical practice of weekly insecticide application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call