Abstract

In this study, we conducted a longitudinal sampling of peanut hull-based litter from a farm under a "no antibiotics ever" program. Our objective was to determine broiler management practices and environmental factors that are associated with the occurrence of food-borne pathogens (Salmonella and Campylobacter) and the abundance of commensal bacteria (Escherichia coli, Enterococcus spp., and Staphylococcus spp.). Litter (n=288) was collected from 4 broiler houses over three consecutive flocks, starting with a complete house cleanout and fresh peanut hull. Litter was sampled at the beginning of each grow-out cycle and at the end of the cycle. Logistic and linear regression models were used to model the relationships between pathogen prevalence, commensal abundance and management practices, and environmental factors. The number of flocks raised on litter, grow-out period, broiler house, litter pH, litter moisture, and house temperature were associated with the prevalence of pathogens and the abundance of commensal bacteria in litter. The final logistic model for pathogens showed that a higher probability of detecting Salmonella in litter was associated with the number of flocks raised on litter and the grow-out period. A higher probability of detecting Campylobacter in litter was associated with the number of flocks raised on litter, broiler house and the sections of the house, and the pH of litter. Our results suggest that management practices and environmental factors affect Salmonella and Campylobacter differently and suggest that each pathogen will require its own tailored intervention to stop their persistence in broiler litter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call