Abstract

Porous metal foams (e.g., Ni/Cu/Ti) are applied as catalyst supports extensively for water splitting due to their large specific area and excellent conductivity, however, intrinsic bubble congestion is unavoidable because of the irregular three-dimensional (3D) networks, resulting in high polarization and degraded electrocatalytic performances. To boost the H2 O decomposition kinetics, the immediate bubble removal and water supply sequential in the gas-liquid-solid interface is essential. Inspired by the high efficiency of water/nutrient transport in the capillaries plants, this work designs a graphene-based capillary array with side holes as catalyst support to manage the bubble release and water supply via a Z-axis controllable digital light processing (DLP) 3D printing technology. Like planting rice, a low-cost, high-active CoNi carbonate hydroxide (CoNiCH) is planted on support. A homemade cell can reach 10mA cm-2 in 1.51V, and be kept at 30mA cm-2 for 60h without noticeable degradation, surpassing most of the known cells. This research provides a promising avenue to design and prepare advanced catalysts in various fields, including energy applications, pollutant treatment, and chemical synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.