Abstract
Seed germination is the complex adaptive trait of higher plants influenced by a large number of genes and environmental factors. Numerous studies have been performed to better understand how germination is controlled by various environmental factors and applied chemicals, such as cyanide. However, still very little is known about the molecular mechanisms of how extrinsic signals regulate seed germination. Our and previous studies found that non-lethal cyanide treatment promotes seed germination, but the regulatory mechanism is unclear. In this study, we found that a low concentration of cyanide pretreatment significantly enhanced the expression of endo-β-mannanase 5 (MAN5) gene in Arabidopsis thaliana, and the mutation of this gene impaired cyanide-mediated seed germination. In contrast, overexpression of MAN5 gene enhanced Arabidopsis seed germination ability under both normal and salt stress conditions. Further studies showed that the expression of the MAN5 gene was negatively regulated by ABA insensitive 5 (ABI5); In abi5 mutant seeds, the expression of the MAN5 gene was increased and the seed germination rate was accelerated. Additionally, cyanide pretreatment markedly reduced the gene expression of ABI5 in Arabidopsis seeds. Taken together, our data support the involvement of MAN5 as a key gene in cyanide-mediated seed germination and confirm the role of ABI5 as a critical negative factor involved in cyanide-regulated MAN5 gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.