Abstract

In this paper, we proposed an effective and efficient approach to the classification of breast cancer microcalcifications and evaluated the mathematical model for calcification on mammography with a large medical dataset. We employed several semi-automatic segmentation algorithms to extract 51 calcification features from mammograms, including morphologic and textural features. We adopted extreme gradient boosting (XGBoost) to classify microcalcifications. Then, we compared other machine learning techniques, including k-nearest neighbor (kNN), adaboostM1, decision tree, random decision forest (RDF), and gradient boosting decision tree (GBDT), with XGBoost. XGBoost showed the highest accuracy (90.24%) for classifying microcalcifications, and kNN demonstrated the lowest accuracy. This result demonstrates that it is essential for the classification of microcalcification to use the feature engineering method for the selection of the best composition of features. One of the contributions of this study is to present the best composition of features for efficient classification of breast cancers. This paper finds a way to select the best discriminative features as a collection to improve the accuracy. This study showed the highest accuracy (90.24%) for classifying microcalcifications with AUC = 0.89. Moreover, we highlighted the performance of various features from the dataset and found ideal parameters for classifying microcalcifications. Furthermore, we found that the XGBoost model is suitable both in theory and practice for the classification of calcifications on mammography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call