Abstract

The mammary gland epithelial components are thought to arise from stem cells that undergo both self-renewal and differentiation. Self-renewal has been shown to be regulated by the Hedgehog, Notch, and Wnt pathways and the transcription factor B lymphoma Mo-MLV insertion region 1 (Bmi-1). We review data about the existence of stem cells in the mammary gland and the pathways regulating the self-renewal of these cells. We present evidence that deregulation of the self-renewal in stem cells/progenitors might be a key event in mammary carcinogenesis. If 'tumor stem cells' are inherently resistant to current therapies, targeting stem cell self-renewal pathways might provide a novel approach for breast cancer treatment.

Highlights

  • The mammary gland in humans and in other mammals is a dynamic organ that undergoes significant developmental changes during pregnancy, lactation, and involution

  • It is likely that the cellular repertoire of the human mammary gland is generated by a stem cell component

  • Two distinct types of human breast epithelial cell (HBEC) progenitor population could be distinguished on the basis of their differential expression of the MUC-1 glycoprotein CALLA/CD10 and epithelial-specific antigen (ESA)

Read more

Summary

Introduction

The mammary gland in humans and in other mammals is a dynamic organ that undergoes significant developmental changes during pregnancy, lactation, and involution. These studies suggest that hedgehog signaling demonstrated that, in vivo, Notch4 has an important role both is involved in mammary stem cell self-renewal.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.