Abstract

Expression of the extracellular matrix glycoprotein tenascin-C in the mammary gland is associated with cellular proliferation and cell motility during organogenesis and tumorigenesis. Because the source and the regulation of tenascin-C in these tissues are unclear, we have used tenascin-C cDNA, FITC-immunofluorescence and immuno-precipitation to examine tenascin-C expression of mammary epithelial cells. Using several mammary epithelial cell lines we could show that tenascin-C can be produced and secreted by epithelial cells. However it was found that tenascin-C synthesis was inversely correlated with the polarized epithelial phenotype. Among three mouse mammary epithelial cell clones, tenascin-C expression was most abundant in HC-11 cells, the least differentiated cell type. Expression levels were high during the growth phase but were nearly abolished when cells were grown to confluence and induced to express milk proteins. Downregulation of tenascin-C by EGF apparently commits HC-11 cells to respond to lactogenic hormones and consequently, hormone induced levels of beta-casein mRNA decreased significantly when HC-11 cells were grown on a tenascin-C substrate. On the other hand, TGF-beta, another growth factor involved in coordinated growth and differentiation of the mammary gland in vivo was found to be a very potent inducer of tenascin-C. The generation of fully polarized and tight epithelium affected the levels of tenascin-C expression. In contrast to HC-11 cells, which do not form epithelial domes in vitro, highly polarized and dome forming EpH4 and Fos-ER cells nearly lacked tenascin-C. Similarly, induction of dome formation in the rat mammary stem cell line Rama 25 by the differentiation inducer dimethylsulfoxide caused a loss of TN-C-transcripts. The inability of Fos-ER cells to develop domes in the presence of soluble tenascin-C also suggests its interference with induction and maintenance of mammary epithelial cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.