Abstract
Marsupials or metatherians are a group of mammals that are distinct in giving birth to young at early stages of development and in having a prolonged investment in lactation. The group consists of nearly 350 extant species, including kangaroos, koala, possums, and their relatives. Marsupials are an old lineage thought to have diverged from early therian mammals some 160 million years ago in the Jurassic, and have a remarkable evolutionary and biogeographical history, with extant species restricted to the Americas, mostly South America, and to Australasia. Although the group has been the subject of decades of phylogenetic research, the marsupial tree of life remains controversial, with most studies focusing on only a fraction of the species diversity within the infraclass. Here we present the first Methaterian species-level phylogeny to include 80% of the extant marsupial species and five nuclear and five mitochondrial markers obtained from Genbank and a recently published retroposon matrix. Our primary goal is to provide a summary phylogeny that will serve as a tool for comparative research. We evaluate the extent to which the phylogeny recovers current phylogenetic knowledge based on the recovery of “benchmark clades” from prior studies—unambiguously supported key clades and undisputed traditional taxonomic groups. The Bayesian phylogenetic analyses recovered nearly all benchmark clades but failed to find support for the suborder Phalagiformes. The most significant difference with previous published topologies is the support for Australidelphia as a group containing Microbiotheriidae, nested within American marsupials. However, a likelihood ratio test shows that alternative topologies with monophyletic Australidelphia and Ameridelphia are not significantly different than the preferred tree. Although further data are needed to solidify understanding of Methateria phylogeny, the new phylogenetic hypothesis provided here offers a well resolved and detailed tool for comparative analyses, covering the majority of the known species richness of the group.
Highlights
The infraclass Metatheria contains seven mammalian orders that share a reproductive strategy, giving birth to undeveloped young and having prolonged investment in lactation (Aplin & Archer, 1987)
Most prior phylogenetic work has suggested that marsupials colonized Australia twice via Antarctica/South America during the breakup of Gondwanaland (Nilsson et al, 2004)
The mtDNA partition data alone resulted in a phylogenetic hypothesis in greater conflict with taxonomy and recent phylogenetic studies than did full concatenated partitions analyses and the nuDNA partition alone, at lower taxonomic levels
Summary
The infraclass Metatheria contains seven mammalian orders that share a reproductive strategy, giving birth to undeveloped young and having prolonged investment in lactation (Aplin & Archer, 1987). The group includes the familiar Australian megafauna, such as kangaroos and koalas, as well as some enigmatic mammals such as wombats, the Tasmanian devil, and the unique South American Monito del Monte. Marsupials have a rather unusual geographic distribution, mostly inhabiting Australasia and South America (Nilsson et al, 2004), with a few genera having relatively recently crossed the Panamanian isthmus and one species (the Virginia opossum) reaching northern North America. A recent study supports the monophyly of the Australasian marsupials, and that marsupials reached Australasia in a single migration event (Nilsson et al, 2010) and diversified with over 200 extant species in the region
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.