Abstract

Here we demonstrate the use of a mammalian two-hybrid system to study protein-protein interactions. Like the yeast two-hybrid system, this is a genetic, in vivo assay based on the reconstitution of the function of a transcriptional activator. In this system, one protein of interest is expressed as a fusion to the Gal4 DNA-binding domain and another protein is expressed as a fusion to the activation domain of the VP16 protein of the herpes simplex virus. The vectors that express these fusion proteins are cotransfected with a reporter chloramphenicol acetyltransferase (CAT) vector into a mammalian cell line. The reporter plasmid contains a cat gene under the control of five consensus Gal4 binding sites. If the two fusion proteins interact, there will be a significant increase in expression of the cat reporter gene. Previously, it was reported that mouse p53 antitumor protein and simian virus 40 large T antigen interact in a yeast two-hybrid system. Using a mammalian two-hybrid system, we were able to independently confirm this interaction. The mammalian two-hybrid system can be used as a complementary approach to verify protein-protein interactions detected by a yeast two-hybrid system screening. In addition, the mammalian two-hybrid system has two main advantages: (i) Assay results can be obtained within 48 h of transfection, and (ii) protein interactions in mammalian cells may better mimic actual in vivo interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call