Abstract

Mammalian cytosolic thioredoxin reductase (TrxR) has a redox center, consisting of Cys(59)/Cys(64) adjacent to the flavin ring of FAD and another center consisting of Cys(497)/selenocysteine (SeCys)(498) near the C terminus. We now show that the C-terminal Cys(497)-SH/SeCys(498)-Se(-) of NADPH-reduced enzyme, after anaerobic dialysis, was converted to a thioselenide on incubation with excess oxidized Trx (TrxS(2)) or H(2)O(2). The Cys(59)-SH/Cys(64)-SH pair also was oxidized to a disulfide. At lower concentrations of TrxS(2), the Cys(59)-SH/Cys(64)-SH center was still converted to a disulfide, presumably by reduction of the thioselenide to Cys(497)-SH/SeCys(498)-Se(-). Specific alkylation of SeCys(498) completely blocked the TrxS(2)-induced oxidation of Cys(59)-SH/Cys(64)-SH, and the alkylated enzyme had negligible NADPH-disulfide oxidoreductase activity. The effect of replacing SeCys(498) with Cys was determined by using a mutant form of human placental TrxR1 expressed in Escherichia coli. The NADPH-disulfide oxidoreductase activity of the purified Cys(497)/Cys(498) mutant enzyme was 6% or 11% of that of wild-type rat liver TrxR1 with 5, 5'-dithiobis(2-nitrobenzoic acid) or TrxS(2), respectively, as substrate. Disulfide formation induced by excess TrxS(2) in the mutant form was 12% of that of the wild type. Thus, SeCys has a critical redox function during the catalytic cycle, which is performed poorly by Cys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call