Abstract

Recent studies implicate the mammalian target of rapamycin (mTOR) pathway in the control of inflammatory responses following Toll-like receptor (TLR) stimulation in myeloid cells but its role in non-myeloid cells such as human keratinocytes is unknown. Here we show that TLR3 signaling can induce robust cytokine secretion including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), IL-12p70 and interferon beta (IFN-β), and our data reveal for the first time that inhibiting mTOR with rapamycin, suppresses these TLR3 induced responses but actually enhances bioactive IL-12p70 production in human oral keratinocytes. Rapamycin inhibited the phosphorylation of the 70-kDa ribosomal protein S6 kinase (p70S6K) and the 4E binding protein 1 (4EBP-1), and suppressed the mitogen activated protein kinase (MAPK) pathway by decreasing phosphorylation of c-Jun N-terminal kinase (JNK). We also show that TLR3 induces interferon regulatory factor 3 (IRF3) activation by Akt via an mTOR–p70S6K–4EBP1 pathway. Furthermore, we provide evidence that Poly I:C induced expression of IL-1β, TNFα, IL-12p70 and IFN-β was blocked by JNK inhibitor SP600125. TLR3 preferentially phosphorylated IKKα through mTOR to activate nuclear factor kappa beta (NF-κB) in human oral keratinocytes. Taken together, these data demonstrate p70S6K, p4EBP1, JNK, NF-κB and IRF3 are involved in the regulation of inflammatory mediators by TLR3 via the mTOR pathway. mTOR is a novel pathway modulating TLR3 induced inflammatory and antiviral responses in human oral keratinocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call