Abstract

The perceived pitch of a complex harmonic sound changes if the partials of the sound are frequency-shifted by a fixed amount. Simple mathematical rules that the perceived pitch could be expected to follow ('first pitch-shift') are violated in psychoacoustic experiments ('second pitchshift'). For this, commonly cognitive cortical processes were held responsible. Here, we show that human pitch perception can be reproduced from a minimal, purely biophysical, model of the cochlea, by fully recovering the psychoacoustical pitch-shift data of G.F. Smoorenburg (1970) and related physiological measurements from the cat cochlear nucleus. For this to happen, the cochlear fluid plays a distinguished role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call