Abstract

The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)-brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK-BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA-protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.