Abstract

The human genome expresses nine patatin-like phospholipase domain containing proteins (PNPLA1-9). Members of this family share a protein domain discovered initially in patatin, the most abundant protein of the potato tuber. Patatin is a lipid hydrolase with an unusual folding topology that differs from classical lipases. Mammalian PNPLAs include lipid hydrolases with specificities for diverse substrates such as triacylglycerols, phospholipids, and retinol esters. Analysis of induced mutant mouse models and the clinical phenotype of patients with mutations revealed important insights into the physiological role of several members of the PNPLA family. This review aims to summarize current knowledge of PNPLA proteins and to document their emerging importance in lipid and energy homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.