Abstract

Protein phosphorylation is one of the most ubiquitous and important types of post-translational modification for the regulation of cell function. The importance of two-component histidine kinases in bacteria, fungi and plants has long been recognised. In mammals, the regulatory roles of serine/threonine and tyrosine kinases have attracted most attention. However, the existence of histidine kinases in mammalian cells has been known for many years, although little is still understood about their biological roles by comparison with the hydroxyamino acid kinases. In addition, with the exception of NDP kinase, other mammalian histidine kinases remain to be identified and characterised. NDP kinase is a multifunctional enzyme that appears to act as a protein histidine kinase and as such, to regulate the activation of some G-proteins. Histone H4 histidine kinase activity has been shown to correlate with cellular proliferation and there is evidence that it is an oncodevelopmental marker in liver. This review mainly concentrates on describing recent research on these two types of histidine kinase. Developments in methods for the detection and assay of histidine kinases, including mass spectrometric methods for the detection of phosphohistidines in proteins and in-gel kinase assays for histone H4 histidine kinases, are described. Little is known about inhibitors of mammalian histidine kinases, although there is much interest in two-component histidine kinase inhibitors as potential antibiotics. The inhibition of a histone H4 histidine kinase by genistein is described and that of two-component histidine kinase inhibitors of structurally-related mammalian protein kinases. In addition, recent findings concerning mammalian protein histidine phosphatases are briefly described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.