Abstract
The zona pellucida (ZP) is a specialized extracellular coat that surrounds the plasma membrane of mammalian eggs. Its presence is essential for successful completion of oogenesis, fertilization and preimplantation development. The ZP is composed of only a few glycoproteins which are organized into long crosslinked fibrils that constitute the extracellular coat. A hallmark of ZP glycoproteins is the presence of a ZP domain, a region of polypeptide responsible for polymerization of the glycoproteins into a network of interconnected fibrils. The mouse egg ZP consists of only three glycoproteins, called ZP1, ZP2, and ZP3, that are synthesized and secreted exclusively by growing oocytes. One of the glycoproteins, ZP3, serves as both a binding partner for sperm and inducer of sperm exocytosis, the acrosome reaction. Female mice lacking ZP3 fail to assemble a ZP around growing oocytes and are completely infertile. Sperm bind to the carboxy-terminal region of ZP3 polypeptide encoded by ZP3 exon-7 and binding is sufficient to induce sperm to complete the acrosome reaction. Whether sperm recognize and bind to ZP3 polypeptide, oligosaccharide, or both remains an unresolved issue. Purified ZP3 self-assembles into long homomeric fibrils under non-denaturing conditions. Apparently, sperm added to ZP3 bind to the fibrils and are prevented from binding to ovulated eggs in vitro. These, as well as other aspects of ZP structure and function are addressed in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Developmental Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.