Abstract

After 25 years of intensive research, the understanding of how photoreceptors in the eye perceive light and convert it into nerve signals has largely advanced. Central to this is the structural and mechanistic exploration of the G protein-coupled receptor rhodopsin acting as a dim-light sensing pigment in the retina. Investigation of rhodopsin by X-ray crystallographic, electron microscopic, and biochemical means depends on the ability to produce and isolate pure rhodopsin protein. Robust and well-defined protocols permit the production and crystallization of rhodopsin variants to investigate the inactive ground, the fully activated metarhodopsin II state, or disease-causing rhodopsin mutations. This chapter details how we express and purify biologically active variants of rhodopsin from HEK293S GnTI(-) cells in a quality and quantity suitable for biochemical assays, crystallization, and structure determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.