Abstract

8-Oxo-7,8-dihydroguanine (8-oxoGua) is produced in cells by reactive oxygen species normally formed during cellular metabolic processes. This oxidized base can pair with both adenine and cytosine, and thus the existence of this base in messenger RNA would cause translational errors. The MutT protein of Escherichia coli degrades 8-oxoGua-containing ribonucleoside di- and triphosphates to the monophosphate, thereby preventing the misincorporation of 8-oxoGua into RNA. Here, we show that for human the MutT-related proteins, NUDT5 and MTH1 have the ability to prevent translational errors caused by oxidative damage. The increase in the production of erroneous proteins by oxidative damage is 28-fold over the wild-type cells in E.coli mutT deficient cells. By the expression of NUDT5 or MTH1 in the cells, it is reduced to 1.4- or 1.2-fold, respectively. NUDT5 and MTH1 hydrolyze 8-oxoGDP to 8-oxoGMP with Vmax/Km values of 1.3 × 10−3 and 1.7 × 10−3, respectively, values which are considerably higher than those for its normal counterpart, GDP (0.1–0.5 × 10−3). MTH1, but not NUDT5, possesses an additional activity to degrade 8-oxoGTP to the monophosphate. These results indicate that the elimination of 8-oxoGua-containing ribonucleotides from the precursor pool is important to ensure accurate protein synthesis and that both NUDT5 and MTH1 are involved in this process in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.