Abstract

In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG.

Highlights

  • The midbrain periaqueductal gray (PAG) comprises several histochemically and functionally distinct, semi-longitudinal columns that integrate descending information from limbic-hypothalamic forebrain areas and ascending sensory information from spinal and medullary afferents to coordinate downstream activation of motor processes that generate overt behavior [1,2,3,4,5]

  • Immunohistochemical analyses of the avian central gray (CG) Based on the lateral displacement of the avian midbrain, we predicted that histochemical features located ventrally in the mammalian PAG would be located medially in the avian CG, whereas histochemical features located dorsally in the PAG, would be located laterally in the CG

  • Whereas tyrosine hydroxylase (TH) immunoreactive (-ir) cells are located basally along the aqueduct in both species, these neurons are present in the ventral PAG of mice, while presumably homologous neurons are found in the medial CG of finches

Read more

Summary

Introduction

The midbrain periaqueductal gray (PAG) comprises several histochemically and functionally distinct, semi-longitudinal columns that integrate descending information from limbic-hypothalamic forebrain areas and ascending sensory information from spinal and medullary afferents to coordinate downstream activation of motor processes that generate overt behavior [1,2,3,4,5]. The large optic tectum of birds is laterally displaced and the central gray (CG) is stretched mediolaterally, rather than dorsoventrally as in mammals This lateral extension of the avian CG has been noted by Dubbeldam [12] who proposed that the CG and adjacent dorsomedial part of the intercollicular nucleus (ICo) share features with the mammalian PAG. Consistent with these ideas, we here hypothesize that the avian CG is organized like a folded open PAG, with medial CG being equivalent to ventral PAG and lateral CG/ICo being equivalent to dorsal PAG To test this hypothesis, and to determine whether birds possess longitudinal columns that run rostrocaudally, we compared the immunocytochemical distributions of several neuropeptides and enzymes in mice and finches, as well as Fos activation patterns in birds (using the gregarious zebra finch, Taeniopygia guttata, and the territorial violet-eared waxbill, Uraeginthus granatina) with those known for rodents. We predicted that 1) the distinct cluster of neuronal nitric oxide synthase (nNOS) neurons that defines the DL column [13,14] occupies the ventrolateral CG, 2) the dense innervation of the dorsal PAG by met-enkephalin (ENK) and substance P (SP) [5] lies laterally in the CG, 3) the vasoactive intestinal polypeptide (VIP) and tyrosine hydroxylase (TH) neurons that characterize the ventral third of the mammalian PAG [15,16] occupy the medial third of the avian CG, and 4) dominance and defensive interactions would produce the strongest Fos activation in the lateral CG, whereas 5) copulation would most strongly activate the rostral CG, in a dorsal region adjacent to the ventricle

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call