Abstract

Notch receptors are involved in cell-fate determination in organisms as diverse as flies, frogs and humans. In Drosophila melanogaster , loss-of-function mutations of Notch produce a 'neurogenic' phenotype in which cells destined to become epidermis switch fate and differentiate to neural cells. Upon ligand activation, the intracellular domain of Notch (ICN) translocates to the nucleus, and interacts directly with the DNA-binding protein Suppressor of hairless (Su(H)) in flies, or recombination signal binding protein Jkappa (RBP-Jkappa) in mammals, to activate gene transcription. But the precise mechanisms of Notch-induced gene expression are not completely understood. The gene mastermind has been identified in multiple genetic screens for modifiers of Notch mutations in Drosophila. Here we clone MAML1, a human homologue of the Drosophila gene Mastermind, and show that it encodes a protein of 130 kD localizing to nuclear bodies. MAML1 binds to the ankyrin repeat domain of all four mammalian NOTCH receptors, forms a DNA-binding complex with ICN and RBP-Jkappa, and amplifies NOTCH-induced transcription of HES1. These studies provide a molecular mechanism to explain the genetic links between mastermind and Notch in Drosophila and indicate that MAML1 functions as a transcriptional co-activator for NOTCH signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.