Abstract

In many mammals, early survival differs between the sexes, with males proving the more fragile sex ["Fragile male (FM) hypothesis"], especially in sexually dimorphic species where males are the larger sex. Male-biased allocation (MBA) by females may offset this difference. Here, we evaluate support for the FM and MBA hypotheses using a dataset on Galapagos sea lions (Zalophus wollebaeki). We statistically model sex-specific survival as it depends on body mass and environmental conditions (sea surface temperature, SST, a correlate of marine productivity) at three developmental stages, the perinatal phase (1st month), the main lactation period (1st year), and the weaning period (2nd year). Supporting the FM hypothesis, we found that, early in life (1st month), at equal birth mass, males survived less well than females. During the remainder of the first year of life, male survival was actually less sensitive to harsh environmental conditions than that of females, contradicting the FM hypothesis and supporting the MBA hypothesis. During the second year of life, only male survival suffered with high SSTs as predicted by the FM hypothesis. At each developmental stage, observed survival rates were almost equal for both sexes, suggesting that mothers buffer against the inherent fragility of male offspring through increased allocation, thereby masking the differences in survival prospects between the sexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.