Abstract

The increased spread of malicious software (malware) through the internet remains a serious threat. Malware authors use obfuscation and deformation techniques to generate new types than can evade traditional detection methods. Hence, it is widely expected that machine learning methods can classify malware and cleanware based on the characteristics of malware samples. This paper investigates malware classification accuracy using static methods for malware detection based on LightGBM by a custom log loss function, which controls learning by installing coefficient α to a loss function of the false-negative side and coefficient β to a loss function of the false-positive side. By installing coefficients, we can create a lopsided classifier. We used two malware datasets, non-public and public, to construct a malware baseline model to verify the effectiveness of the proposed method. We extracted the dataset features from PE-file surface analysis and PE-header dumps and customized a binary log loss function to improve all the classification evaluation metrics to a certain extent. We obtained a better result (AUC = 0.979) at α = 430 and β = 339 than the normal log loss function (AUC = 0.978) on the EMBER dataset. In addition, to maintain malware detection coverage and quick countermeasures to true positive results, we propose a hybrid usage of different custom models to prioritize positive results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.