Abstract
Malware has always been a problem in regards to any technological advances in the software world. Thus, it is to be expected that smart phones and other mobile devices are facing the same issues. In this paper, a practical and effective anomaly based malware detection framework is proposed with an emphasis on Android mobile computing platform. A dataset consisting of both benign and malicious applications (apps) were installed on an Android device to analyze the behavioral patterns. We first generate the system metrics (feature vector) from each app by executing it in a controlled environment. Then, a variety of machine learning algorithms: Decision Tree, K Nearest Neighbor, Logistic Regression, Multilayer Perceptron Neural Network, Naive Bayes, Random Forest, and Support Vector Machine are used to classify the app as benign or malware. Each algorithm is assessed using various performance criteria to identify which ones are more suitable to detect malicious software. The results suggest that Random Forest and Support Vector Machine provide the best outcomes thus making them the most effective techniques for malware detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.