Abstract

Malware classification is an important and challenging problem in information security. Modern malware classification techniques rely on machine learning models that can be trained on features such as opcode sequences, API calls, and byte $n$-grams, among many others. In this research, we consider opcode features. We implement hybrid machine learning techniques, where we engineer feature vectors by training hidden Markov models -- a technique that we refer to as HMM2Vec -- and Word2Vec embeddings on these opcode sequences. The resulting HMM2Vec and Word2Vec embedding vectors are then used as features for classification algorithms. Specifically, we consider support vector machine (SVM), $k$-nearest neighbor ($k$-NN), random forest (RF), and convolutional neural network (CNN) classifiers. We conduct substantial experiments over a variety of malware families. Our experiments extend well beyond any previous work in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.