Abstract

Antimalware offers detection mechanism to detect and take appropriate action against malware detected. To evade detection, malware authors had introduced polymorphism to malware. In order to be effectively analyzing and classifying large amount of malware, it is necessary to group and identify them into their corresponding families. Hence, malware classification has appeared as a need in securing our computer systems. Algorithms and classifiers such as k-Nearest Neighbor, Artificial Neural Network, Support Vector Machine, Naive Bayes, and Decision Tree had shown their effectiveness towards malware classification in various recent researches. This paper proposed the concept of ensemble classifications to classify malwares, in which three individual classifiers, k-Nearest Neighbor, Decision Tree and Naive Bayes classifiers are ensemble by using the bagging approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.