Abstract

Extracts prepared from cultures of Bacillus subtilis, grown on maltose as the sole carbon source, lacked maltose phosphotransferase system activity. There was, however, evidence for a maltose phosphorylase activity, and such extracts also possessed both glucokinase and glucose phosphotransferase system activities. Maltose was accumulated by whole cells of B. subtilis by an energy-dependent mechanism. This uptake was sensitive to the effects of uncouplers, suggesting a role for the proton-motive force in maltose transport. Accumulation of maltose was inhibited in the presence of glucose, and there was no accumulation of maltose by a strain carrying the ptsl6 null-mutation. A strain carrying the temperature-sensitive ptsl1 mutation accumulated maltose normally at 37°C but, in contrast to the wild-type, was devoid of maltose transport activity at 47°C. The results indicate a role for the phosphotransferase system in the regulation of maltose transport activity in this organism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.