Abstract

Various ammonia sensors based on different materials have continuously been developed and employed to enable real-time monitoring of ammonia gas in the environment. Efforts are put not only to improve their sensitivity and selectivity towards the target gas but also to operate them at room temperature. Here, we investigated the effect of overlaying maltodextrin with different concentrations on the surface of polyvinyl acetate (PVAc) nanofibers on ammonia sensing performances, in which quartz crystal microbalance (QCM) was utilized as a transducer to measure the resonance frequency shift affected by the adsorbed gas molecules. Higher concentrations of the overlaying maltodextrin led to larger nanofiber diameter and more functional active groups on the active nanofibrous layers. PVAc nanofibers with 0.05% maltodextrin overlay demonstrated the highest sensitivity of 0.525 Hz·ppm−1 at room temperature, which was 6.4 times higher than their bare counterpart (nanofiber without maltodextrin overlay). That sensor also possessed fast response and recovery times of 32 s and 17 s with a low detection limit (1.92 ppm). Besides its high reproducibility, reversibility, and repeatability, the sensor exhibited outstanding selectivity to other gas analytes and good long-term stability for 32 days of testing. This research shows that maltodextrin overlay can be used as a low-cost alternative route to increase the performance of organic material-based ammonia sensors, especially polymer nanofibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call