Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, therapeutic management of HCC remains a challenge, emphasizing the importance of exploring novel targets. MALT1 paracaspase is a druggable signaling molecule whose dysregulation has been linked to hematological and solid tumors. However, the role of MALT1 in HCC remains poorly understood, leaving its molecular functions and oncogenic implications unclear. Here we provide evidence that MALT1 expression is elevated in human HCC tumors and cell lines, and that correlates with tumor grade and differentiation state, respectively. Our results indicate that ectopic expression of MALT1 confers increased cell proliferation, 2D clonogenic growth, and 3D spheroid formation in well differentiated HCC cell lines with relatively low MALT1 levels. In contrast, stable silencing of endogenous MALT1 through RNA interference attenuates these aggressive cancer cell phenotypes, as well as migration, invasion, and tumor-forming ability, in poorly differentiated HCC cell lines with higher paracaspase expression. Consistently, we find that pharmacological inhibition of MALT1 proteolytic activity with MI-2 recapitulates MALT1 depletion phenotypes. Finally, we show that MALT1 expression is positively correlated with NF-kB activation in human HCC tissues and cell lines, suggesting that its tumor promoting functions may involve functional interaction with the NF-kB signaling pathway. This work unveils new insights into the molecular implications of MALT1 in hepatocarcinogenesis and places this paracaspase as a potential marker and druggable liability in HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.