Abstract

We present results of an optical spectroscopic survey using SALT and the Nordic Optical Telescope to build a Wide-field Infrared Survey Explorer mid-infrared color-based, dust-unbiased sample of powerful radio-bright (>200 mJy at 1.4 GHz) active galactic nuclei (AGN) for the MeerKAT Absorption Line Survey (MALS). Our sample has 250 AGN (median z = 1.8) showing emission lines, 26 with no emission lines, and 27 without optical counterparts. Overall, our sample is fainter (Δi = 0.6 mag) and redder (Δ(g−i) = 0.2 mag) than radio-selected quasars, and representative of fainter quasar population detected in optical surveys. About 20% of the sources are narrow-line AGN (NLAGN)–65% of these, at z < 0.5 are galaxies without strong nuclear emission, and 10% at z > 1.9, have emission line ratios similar to radio galaxies. The farthest NLAGN in our sample is M1513-2524 (z em = 3.132), and the largest radio source (size ∼330 kpc) is M0909-3133 (z em = 0.884). We discuss in detail 110 AGN at 1.9 < z < 3.5. Despite representing the radio loudest quasars (median R = 3685), their Eddington ratios are similar to the Sloan Digital Sky Survey quasars having lower R. We detect four C iv broad-absorption line (BAL) QSOs, all among AGN with least R, and highest black hole masses and Eddington ratios. The BAL detection rate (%) is consistent with that seen in extremely powerful (L 1.4GHz > 1025 W Hz−1) quasars. Using optical light curves, radio polarization, and γ-ray detections, we identify seven high-probability BL Lacertae objects. We also summarize the full MALS footprint to search for H i 21 cm and OH 18 cm lines at z < 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call