Abstract

Abstract In this work, we show how the design of one-, two- and three-dimensional materials can strongly benefit from the use of crystal engineering techniques, which can give rise to structures of different shapes, and how these differences can give rise to different properties. We will focus on the networks constructed by assembling malonate ligands and metal centres. The idea of using malonate (dianion of propanedioic acid, H 2 mal) is that they can give rise to different coordination modes with the metal ions bind. Extended magnetic networks of dimensionalities 1 (1D), 2 (2D) and 3 (3D) can be chemically constructed from malonato-bridged metallic complexes. These coordination polymers behave as ferro-, ferri- or canted antiferromagnets. The control of the spatial arrangement of the magnetic building blocks is of paramount importance in determining the strength of the magnetic interaction. It depends on the coordination bond between the metal ion and the ligands, and on supramolecular interactions such as stacking interactions or hydrogen bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.