Abstract

Isolated Langendorff-perfused rat hearts after 20 min of normoxic perfusion in the presence of 2.5 mM Ca ++ and 11 mM glucose were subjected to 30 min of global normothermic ischemia followed by 30 min of normoxic reperfusion with the starting buffer. At the end of each perfusion condition, hearts were freeze-clamped and deproteinized by 0.6 M HClO 4. Two-hundred μL of the neutralized tissue extracts were analyzed by a recently developed high-performance liquid chromatography (HPLC) method for the simultaneous determination of malondialdehyde (MDA), ascorbic acid, and adenine nucleotides. By means of this analytical technique, it was possible to demonstrate that MDA is undetectable in control hearts. In contrast, 30 min of ischemia induced a modest production of MDA (0.012 μmol/g dw), while a large amount of MDA (0.103 μmol/g dw) was observed in reperfused hearts. Values referring to ascorbic acid showed that the concentration of this antioxidant progressively decreased from 1.190 (control hearts) to 0.837 (ischemic hearts) and to 0.595 μmol/g dw (reperfused hearts). The overall conclusions of this study are that reperfusion induces an oxidative stress to the isolated myocardium, a decrease of ascorbate, and an increase of lipid peroxidation. Therefore, by means of proper analytical method, MDA may represent a valid biochemical parameter to demonstrate the relationship between myocardial reperfusion and a detectable tissue damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.