Abstract

We investigate the weak order of convergence for space-time discrete approximations of semilinear parabolic stochastic evolution equations driven by additive square-integrable Levy noise. To this end, the Malliavin regularity of the solution is analyzed and recent results on refined Malliavin-Sobolev spaces from the Gaussian setting are extended to a Poissonian setting. For a class of path-dependent test functions, we obtain that the weak rate of convergence is twice the strong rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.