Abstract

Dynamic covalent polymers (DCPs) that strike a balance between high performance and rapid reconfiguration have been a challenging task. For this purpose, a solution is proposed in the form of a new dynamic covalent supramolecular motif-guanidine urea structure (GUAs). GUAs contain complex and diverse chemical structures as well as unique bonding characteristics, allowing guanidine urea supramolecular polymers to demonstrate advanced physical properties. Noncovalent interaction aggregates (NIAs) have been confirmed to form in GUA-DCPs through multistage H-bonding and π-π stacking, resulting in an extremely high Young's modulus of 14 GPa, suggesting remarkable mechanical strength. Additionally, guanamine urea linkages in GUAs, a new type of dynamic covalent bond, provide resins with excellent malleability and reprocessability. Guanamine urea metathesis is validated using small molecule model compounds, and the temperature dependent infrared and rheological behavior of GUA-DCPs following the dissociative exchange mechanism. Moreover, the inherent photodynamic antibacterial properties are extensively verified by antibacterial experiments. Even after undergoing three reprocessing cycles, the antibacterial rate of GUA-DCPs remains above 99% after 24 h, highlighting their long-lasting antibacterial effectiveness. GUA-DCPs with dynamic nature, tuneable composition, and unique combination of properties make them promising candidates for various technological advancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.