Abstract

Mallards inhabit soft grounds such as mudflats, marshes, and beaches, demonstrating remarkable proficiency in traversing these grounds. This adeptness is closely linked to the adjustments in the operation of their hindlimbs. This study employs high-speed videography to observe postural adjustments during locomotion across mudflats. Analysis of spatiotemporal parameters of the hindlimbs reveals transient and continuous changes in joints (tarsometatarso-phalangeal joint (TMTPJ), intertarsal joint (ITJ), knee, and hip) during movement on different ground hardness and slope (horizontal and uphill). The results indicate that as the stride length of the mallard increases, its speed also increases. Additionally, the stance phase duration decreases, leading to a decrease in the duty factor. Reduced ground hardness and increased slope lead to delayed adjustment of the TMTPJ, ITJ, and knee. Mallards adjust their stride length by augmenting ITJ flexion on steeper slopes, while reduced hardness prompts a decrease in TMTPJ flexion at touch-down. Additionally, the hip undergoes two brief extensions during the stance phase, indicating its crucial role in posture adjustment and propulsion on uphill grounds. Overall, the hindlimb joints of the mallard function as a whole musculoskeletal system, with each joint employing a distinct strategy for adjusting to adapt to various ground conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.