Abstract

Malignant Hyperthermia (“MH”)—the rapid onset of extremely high fever with muscle rigidity—is caused by a runaway heat production futile cycle mediated via the sodium channels at the myoneural receptor sites. MH is not triggered by non-depolarizing muscle relaxants; however, depolarizing muscle relaxants may trigger it [1]. Here we present a de novo hypothesis of how MH is triggered and develops. We believe that the acetylcholine receptor/sodium channels in the muscles of MH susceptible pigs initiate MH by allowing an increased flux of sodium ions when it is depolarized by acetylcholine or other depolarizing agents, such as succinylcholine and Halothane. Our theory is consistent with our observations of the effects of general anesthetics over twenty years. Succinylcholine is a depolarizing agent that is a potent MH trigger. Acetylcholine, the natural depolarizing muscle activator, may trigger MH if the susceptible patient or animal is exposed to sufficient stress, i.e., during strenuous activity, such as transport, fighting, breeding, etc. Halothane apparently destabilizes the myoneural sodium channels, which rapidly induces MH. The increased sodium channel activity releases heat with cascades that further releases of heat which results in the rapid onset of MH. MH susceptible pigs have increased action potential amplitudes at their myoneural junctions that are abnormally long in duration. This increased activity is thought to induce hypertrophy of muscle mass, increase metabolic rate, and cause other physical manifestations. When slaughtered, this increased metabolic activity causes the rapid post mortem release of heat in the muscles of MH susceptible pigs and, at the same time, the accumulation of low acidity, all of which denatures the muscle proteins to result in a pale, soft, exudative, pork meat considered to be of lesser quality for human consumption. The potency of inhalation anesthetics as a MH triggers varies widely. The inhalation anesthetic Halothane is a strong trigger of MH, causing MH within minutes of exposure. In contrast, the anesthetic Sevoflurane is a very weak trigger of MH, requiring several hours of inhalation exposure to trigger MH. Because of this, changing from Halothane to Sevoflurane as the general anesthetic of choice for surgeries in hospitals in the Greater Kansas City area during 1994 to 2006 led to an 11-fold decrease in the incidence of MH, from 1:50,000 to 1:550,000 [11]. One non-depolarizing muscle relaxant, Organon 9426 (“Rocuronium”) temporarily prevents MH in MH susceptible pigs when they are given sufficient dosages of it before being challenged with either Halothane or succinylcholine. Binding Rocuronium to the myoneural receptor sites apparently stabilizes them, thereby preventing increased sodium channel activity, and resulting MH. However, other non-depolarizing muscle relaxants do not have this protective effect— for examples Vecuronium, Arduan, and Organon 9616 do not. Uncoupling of mitochondria is not the source of accelerated heat production in MH susceptible pigs, as heart, liver, and skeletal muscle mitochondria isolated from MH susceptible pigs are all competent.

Highlights

  • Our population of Malignant Hyperthermia (MH) susceptible pigs began in 1969

  • Malignant Hyperthermia (“MH”)—the rapid onset of extremely high fever with muscle rigidity—is caused by a runaway heat production futile cycle mediated via the sodium channels at the myoneural receptor sites

  • We believe that the acetylcholine receptor/sodium channels in the muscles of MH susceptible pigs initiate MH by allowing an increased flux of sodium ions when it is depolarized by acetylcholine or other depolarizing agents, such as succinylcholine and Halothane

Read more

Summary

Introduction

Our population of MH susceptible pigs began in 1969. We conducted selective breeding and culling over 20 years for genetic studies and to produce highly MH sus- OPEN ACCESSC. We believe that the acetylcholine receptor/sodium channels in the muscles of MH susceptible pigs initiate MH by allowing an increased flux of sodium ions when it is depolarized by acetylcholine or other depolarizing agents, such as succinylcholine and Halothane. This increased metabolic activity causes the rapid post mortem release of heat in the muscles of MH susceptible pigs and, at the same time, the accumulation of low acidity, all of which denatures the muscle proteins to result in a pale, soft, exudative, pork meat considered to be of lesser quality for human consumption.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.