Abstract

Reliable detection of primary users (PUs) is an important task for cognitive radio (CR) systems. Cooperation among a few spectrum sensors has been shown to offer significant gain in the performance of the CR spectrum-sensing system by countering the shadow-fading effects. We consider a parallel fusion network in which the sensors send their sensing information to an access point which makes the final decision regarding presence or absence of the PU signal. It has been shown in the literature that the presence of malicious users sending false sensing data can severely degrade the performance of such a cooperative sensing system. In this paper, we investigate schemes to identify the malicious users based on outlier detection techniques for a cooperative sensing system employing energy detection at the sensors. We take into consideration constraints imposed by the CR scenario such as the lack of information about the primary signal propagation environment and the small size of the sensing data samples. Considering partial information of the PU activity, we propose a novel method to identify the malicious users. We further propose malicious user detection schemes that take into consideration the spatial information of the CR sensors. The performance of the proposed schemes are studied using simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.