Abstract

In eye core lens membranes, aquaporin-0 (AQP0) and connexins (Cx) form together well-structured supramolecular assemblies, the junctional microdomains, in which they assure water, ion, metabolite, and waste transport. Additionally, they mediate cell-cell adhesion-forming thin junctions (AQP0) and gap junctions (Cx). We have used atomic force microscopy and biochemical methods to analyze and compare the structure of junctional microdomains in human cataract lens membranes from a type II diabetes patient and healthy lens membranes from calf. A healthy intercellular junctional microdomain consists in average of approximately 150 tetragonally arranged (a = b = 65.5 A, gamma = 90 degrees) AQP0 tetramers surrounded by densely packed non-ordered connexon channels. Gap-junction connexons act as lineactants inside the membrane and confine AQP0 in the junctional microdomains. In the diabetic cataract lens, connexons were degraded, and AQP0 arrays are malformed. We conceptualize that absence of connexons lead to breakdown of cell nutrition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.