Abstract
Modular assembly in low Earth orbit (MALEO) is a new strategy for building an initial operational‐capability lunar habitation base, the main purpose of which is to safely initiate and sustain early lunar base buildup operations. In this strategy the lunar base components are brought up to low Earth orbit (LEO) by the Space Transportation System (STS), and assembled there to form the complete lunar base. Specially designed propulsion systems are then used to transport the MALEO lunar base, complete and intact, all the way to the moon. Upon touchdown on the lunar surface, the MALEO lunar habitation base is operational. The strategy is unlike conventional concepts, which have suggested that the components of the lunar base be launched separately from the Earth and landed one at a time on the moon, where they are assembled by robots and astronauts in extravehicular activity (EVA). The architectural drivers for the MALEO concept are, first, the need to provide an assured safe haven and comfortable working environment for the astronaut crew as safely and as quickly as possible, with the minimum initially risky EVA, and secondly, the maximum exploitation of the evolutionary benefits derived from the assembly and operation of space station Freedom (SSF‐1). Commonality and inheritability from the space station assembly experience is expected to have an advantageous impact on both the space station program as well as the MALEO lunar base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.