Abstract

In contrast to the majority of vertebrate species, primary male parental care is common in fishes and encompasses a remarkable diversity of adaptations. Seahorses and pipefishes (Family Syngnathidae) exhibit some of the most specialized forms of paternal care in animals and so are ideally suited to the study of the evolution of male parental care. During mating, female syngnathids transfer eggs to specialized morphological structures that are located on either the abdomen or tail of the male. The male provides all postfertilization parental care and has morphological and physiological adaptations to osmoregulate, aerate, and even nourish the developing embryos. While all syngnathid species are adapted for paternal care, the brooding structure with which this is accomplished varies between species, from simple ventral gluing areas to much more complex structures such as the completely enclosed pouches of the seahorses. Our combined cytochrome b-, 12S rDNA-, and 16S rDNA-based molecular phylogeny of syngnathid fishes demonstrates that rapid diversification of male brooding structures has been associated with the major evolutionary radiation of the group, suggesting that development and diversification of structures involved in paternal care may have been key evolutionary innovations of the Syngnathidae. Molecular analyses also highlight geographical centers of biodiversity and suggest interoceanic migration of Syngnathus pipefishes from their center of origin in the Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call