Abstract

Spindle elongation is crucial to normal chromosome separation in eukaryotes; in particular, it is required for or associated with the extension of distance between spindle poles and the further moving apart of the already separated chromosomes. However, little is known about the relationship between spindle elongation and the status of chromosome separation, and it is unknown whether spindle elongation in different organisms shares any quantitative feature. The Arabidopsis ask1-1 mutant might be a unique material for addressing these questions because it appears to have functional spindles, but a severe defect in homolog separation at male anaphase I (M. Yang, Y. Hu, M. Lodhi, W.R. McCombie, H Ma [1999] Proc Natl Acad Sci USA 96: 11416-11421). We have characterized male meiotic spindle lengths in wild-type and the ask1-1 mutant plants. We observed that during meiosis I some ask1-1 cells had spindles that were similar in length to fully elongated normal spindles, but the chromosomes in these cells did not show appreciable movement from the equator. Furthermore, greater movement of chromosomes from the equator was usually found in the ask1-1 cells that had longer than normal spindles. These results suggest that additional elongation of ask1-1 spindles occurred; one possible reason for the extra-long spindles may be that it is a consequence of chromosome non-separation. We also found that normal and ask1-1 spindle lengths are clustered at discrete values, and their differences are of multiples of 0.7 microm. A search of the literature revealed that in each of several organisms, spindle lengths also differ by multiples of 0.7 microm. These findings strongly suggest that the spindle elongates in response to status of chromosome separation, and perhaps there are conserved mechanisms controlling the extent of spindle elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.