Abstract

In a range of taxa, the relatedness between mates influences both pre- and post-mating processes of sexual selection. However, relatively little is known about the genetic loci facilitating such a bias, with the exception of the major histocompatibility complex. Here, we performed tightly controlled replicated in vitro fertilization trials to explore the impact of relatedness on two possible mechanisms of cryptic female choice (CFC) in Chinook salmon (Oncorhynchus tshawytscha). We tested (i) whether relatedness of mates, assessed using 682 single nucleotide polymorphisms (SNPs) on 29 SNP-linkage groups (LGs), biases a male's sperm velocity in ovarian fluid (a parameter previously shown to predict male fertilization success), and (ii) whether relatedness of mates governs fertilization success via other mechanisms, probably via sperm-egg interactions. We found that relatedness on three LGs explained the variation in sperm velocity, and relatedness on two LGs explained fertilization success, which might indicate the presence of genes important in sperm-ovarian fluid and sperm-egg interactions in these genomic regions. Mapping of the SNPs on these LGs to the rainbow trout genome revealed two genes that affect fertility in humans and represent candidate genes for further studies. Our results thereby provide a novel contribution to the understanding of the mechanism of CFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.