Abstract
Currently, the efforts to find materials with high κ anisotropy ratios mainly focus on layered materials, however, the limited quantity and lower workability comparing to non-layered ones boost the exploration of non-layered materials with high κ anisotropy ratios. Here, taking PbSnS3 , a typical non-layered orthorhombic compound, as an example, we propose that maldistribution of chemical bond strength can lead to large anisotropy of κ in non-layered materials. Our result reveals that the maldistribution of Pb-S bonds lead to obvious collective vibrations of dioctahedron chain units, resulting in an anisotropy ratio up to 7.1 at 200 K and 5.5 at 300 K, respectively, which is one of the highest ever reported in non-layered materials and even surpasses many classical layered materials such as Bi2 Te3 and SnSe. Our findings can not only broaden the horizon for exploring high anisotropic κ materials but also provide new opportunities for the application of thermal management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.