Abstract

Traditional phenotype-based screening for β-globin variant and β-thalassemia using hematological parameters is time-consuming with low-resolution detection. Development of a MALDI-TOF-MS assay using alternative markers is needed. We constructed a MALDI-TOF-MS-based approach for identifying various β-globin disorders and classifying thalassemia major (TM) and thalassemia intermedia (TI) patients using 901 training samples with known HBB/HBA genotypes. We then validated the accuracy of population screening and clinical classification in 2 separate cohorts consisting of 16 172 participants and 201 β-thalassemia patients. Traditional methods were used as controls. Genetic tests were considered the gold standard for testing positive specimens. We established a prediction model for identifying different forms of β-globin disorders in a single MALDI-TOF-MS test based on δ- to β-globin, γ- to α-globin, γ- to β-globin ratios, and/or the abnormal globin-chain patterns. Our validation study yielded comparable results of clinical specificity (99.89% vs 99.71%), and accuracy (99.78% vs 99.16%) between the new assay and traditional methods but higher clinical sensitivity for the new method (97.52% vs 88.01%). The new assay identified 22 additional abnormal hemoglobins in 69 individuals including 9 novel ones, and accurately screened for 9 carriers of deletional hereditary persistence of fetal hemoglobin or δβ-thalassemia. TM and TI were well classified in 178 samples out of 201 β-thalassemia patients. MALDI-TOF-MS is a highly accurate, predictive tool that could be suitable for large-scale screening and clinical classification of β-globin disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call