Abstract

Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.