Abstract

Histopathologic differentiation of nodular lesions in cirrhotic liver is difficult even for experienced hepatopathologists especially regarding diagnosis of hepatocellular carcinoma (HCC) in biopsies. For this reason, new tissue markers are needed to reinforce histopathologic decision-making. With advances in molecular techniques, proteomic analysis may help to confirm the diagnosis of HCC. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology which allows to determine and to localize proteins directly in tissue sections. Using MALDI IMS proteomic patterns of cryosections with lesions of HCC (n = 15) and non-malignant fibrotic liver tissue (n = 11) were investigated to establish a classification model of HCC, which was validated in an independent set of tissue to distinguish HCC (n = 10) from regenerative nodules (n = 8). By correlating generated mass spectrometric images with the histology of the tissue sections we found that the expression of 4 proteins as indicated by m/z 6274, m/z 6647, m/z 6222 and m/z 6853 was significantly higher in HCC tissue than in non-tumorous liver tissue. The generated classification model based on the most significant 3 differentially expressed proteins allowed a reliable prediction of benign and malignant lesions in fibrotic liver tissue with a sensitivity and specificity of 90 % in the validation set. The identified MALDI IMS proteomic signature can be diagnostically helpful to allow simplifying the diagnostic process and minimize the risks of delays in establishing the objective final diagnosis and initiating treatment of patients with HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.