Abstract

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), one of the first found cancer-associated long noncoding RNAs (lncRNAs), involves in the development and progression of many types of tumors. An aberrant expression of MALAT1 was observed in hepatocellular carcinoma, cervical cancer, breast cancer, ovarian cancer, and colorectal cancer. However, the exact effects and molecular mechanisms of MALAT1 in osteosarcoma progression are still unknown up to now. Here, we investigated the role of MALAT1 in human osteosarcoma cell lines and clinical tumor samples in order to determine the function of this molecule. In our research, the MALAT1 messenger RNA (mRNA) was highly expressed in human osteosarcoma tissues, and its expression level was closely correlated with pulmonary metastasis. Then, we employed lentivirus-mediated knockdown of MALAT1 in U-2 OS and SaO2 to determine the role of MALAT1 in osteosarcoma cell lines. Lentivirus-mediated MALAT1 small interfering RNA (siRNA) could efficiently downregulated the expression level of MALAT1 in osteosarcoma cell lines. Knockdown of MALAT1 inhibited the proliferation and invasion of human osteosarcoma cell and suppressed its metastasis in vitro and vivo. At the same time, the proliferating cell nuclear antigen (PCNA), matrix metallopeptidase 9 (MMP-9), phosphorylated PI3Kp85α, and Akt expressions were significantly inhibited in MALAT1-deleted cells. These findings indicated that MALAT1 might suppress the tumor growth and metastasis via PI3K/AKT signaling pathway. Taken together, our data indicated that MALAT1 might be an oncogenic lncRNA that promoted proliferation and metastasis of osteosarcoma and could be regarded as a therapeutic target in human osteosarcoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.