Abstract

Cardiovascular disease has become the leading cause of death in the world. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in cardiovascular disease, such as stroke. However, the role of MALAT1 in hypoxia (HYP)-induced vascular endothelial cells (VECs) remains unclear. In the present study, HYP-treated human umbilical vein endothelial cells (HUVECs) were utilized to simulate HYP-induced VEC injury. It was found that after HYP treatment, the levels of MALAT1 and hypoxia-induced factor-1 (HIF-1α) in HUVECs were upregulated, while the level of miR-19b-3p was downregulated. Knockdown of MALAT1 with siRNA significantly reduced the HIF-1α level induced by HYP. In addition, MALAT1 knockdown inhibited HYP-induced HUVECs apoptosis, autophagy and inflammation. The overexpression of HIF-1α overcame the effect of MALAT1 knockdown. Mechanism analysis showed that MALAT1-targeted miR-19b-3p and then regulated downstream HIF-1α. MALAT1 knockdown increased the level of miR-19b-3p in cells, and increased miR-19b-3p further inhibited the expression of HIF-1α, thereby reducing the HYP-induced HUVECs apoptosis, autophagy and inflammation. Taken together, these results suggest that MALAT1 may be a potential target for mitigating HYP-induced endothelial cell injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.