Abstract

The properties of the malaria parasite-induced permeability pathways in the host red blood cell have been a major area of interest particularly in the context of whether the pathways are host- or parasite-derived. In the present study, the whole-cell configuration of the patch-clamp technique has been used to show that, compared with normal cells, chicken red blood cells infected by Plasmodium gallinaceum exhibited a 5–40-fold larger membrane conductance, which could be further increased up to 100-fold by raising intracellular Ca 2+ levels. The increased conductance was not due to pathways with novel electrophysiological properties. Rather, the parasite increased the activity of endogenous 24 pS stretch-activated non-selective cationic (NSC) and 62 pS calcium-activated NSC channels, and, in some cases, of endogenous 255 pS anionic channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call