Abstract

Malaria is a very serious disease that caused by the transmitted of parasites through the bites of infected Anopheles mosquito. Malaria death cases can be reduced and prevented through early diagnosis and prompt treatment. A fast and easy-to-use method, with high performance is required to differentiate malaria from non-malarial fevers. Manual examination of blood smears is currently the gold standard, but it is time-consuming, labour-intensive, requires skilled microscopists and the sensitivity of the method depends heavily on the skills of the microscopist. Currently, microscopy-based diagnosis remains the most widely used approach for malaria diagnosis. The development of automated malaria detection techniques is still a field of interest. Automated detection is faster and high accuracy compared to the traditional technique using microscopy. This paper presents an exhaustive review of these studies and suggests a direction for future developments of the malaria detection techniques. This paper analysis of three popular computational approaches which is k-mean clustering, neural network, and morphological approach was presented. Based on overall performance, many research proposed based on the morphological approach in order to detect malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.